Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Da-Qing Shi,^{a,b}* Li-Hui Niu,^a Xiang-Shan Wang,^{a,b} Qi-Ya Zhuang^{a,b} and Yong Zhang^c

^aDepartment of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, ^bThe Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China, and ^cSchool of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

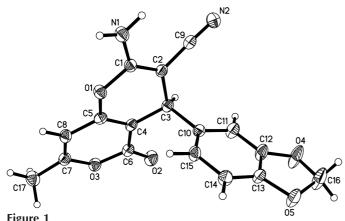
Single-crystal X-ray study T = 193 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.039 wR factor = 0.102Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Amino-7-methyl-4-(3,4-methylenedioxy-phenyl)-5-oxopyrano[3,2-c]pyran-3-carbonitrile *N*,*N*-dimethylformamide solvate

The title compound, $C_{17}H_{12}N_2O_5.C_3H_7NO$, was synthesized by the reaction of 4-hydroxy-6-methylpyran-2-one and 3,4-methylenedioxybenzylidenemalononitrile in the presence of triethylbenzylammonium chloride in an aqueous medium. The pyranone ring is almost planar, while the pyran ring adopts a boat conformation.

Received 14 October 2004 Accepted 11 November 2004 Online 20 November 2004


Comment

4*H*-Chromene is a construction unit of some natural products. 4*H*-Chromenes with amino and cyano groups are also a synthon of some special natural products (Hatakeyama *et al.*, 1998; O'Callaghan & McMurry, 1995). We have recently reported the synthesis of some 4*H*-chromene derivatives (Shi *et al.*, 2002; Zhuang *et al.*, 2002; Wang *et al.*, 2004). As part of our program aimed at developing new and environmentally friendly methodologies for the preparation of fine chemicals (Shi *et al.*, 2003), we have synthesized the title compound, (I), in an aqueous medium. We report here the synthesis and the crystal structure of (I).

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

In (I), the pyranone ring is almost planar, with deviations of less than 0.022 (2) Å (Fig. 1). The pyran ring adopts a boat conformation: atoms C3, C4, C5 and O1 are coplanar, while atoms C1 and C2 deviate from the plane by 0.329 (2) and 0.417 (2) Å, respectively. A similar conformation was observed in the structure of 2-amino-4-(2-chlorophenyl)-3ethoxycarbonyl-4H-benzo[f]chromene (Zhuang et al., 2003). The dihedral angle between the pyranone and the substituted benzene ring is 81.5 (3)°. Because of the existence of a conjugated system, the C1-N1 bond length of 1.336 (2) Å is shorter than the typical Csp^2 – N bond distance (Lorente *et al.*, 1995). The sum of the bond angles around N1 indicates a planar geometry. Intermolecular hydrogen bonds are formed between the amino group and both atom N2 of the cyano group and atom O6 of the carbonyl group in the N,N-dimethylformamide solvent molecule (Fig. 2 and Table 2).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecular structure of (I), showing 45% probability displacement ellipsoids and the atom-numbering scheme.

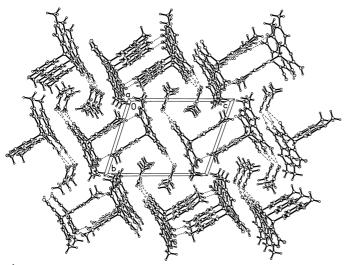


Figure 2 A molecular packing diagram for (I). Dashed lines indicate hydrogen bonds.

Experimental

The title compound, (I), was prepared by the reaction of 4-hydroxy-6methylpyran-2-one (0.25 g, 2 mmol) and 3,4-methylenedioxybenzylidenemalononitrile (0.40 g, 2 mmol) in the presence of triethylbenzylammonium chloride (0.2 g) in water (10 ml) at 363 K for 12 h (yield 94%, m.p. 501-503 K). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an aqueous N,N-dimethylformamide solution. ¹H NMR (DMSO- d_6 , δ): 2.23 (3H, s, CH₃), 4.22 (1H, s, CH), 5.99 (2H, s, OCH₂O), 6.26 (1H, s, ArH), 6.66 (1H, d, J = 1)8.0 Hz, ArH), 6.72 (1H, s, ArH), 6.84 (1H, d, J = 8.0 Hz, ArH), 7.16 (2H, s, NH₂).

Crystal data

- ,	
$C_{17}H_{12}N_2O_5 \cdot C_3H_7NO$	Z = 2
$M_r = 397.38$	$D_x = 1.413 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 6.7513 (18) Å	Cell parameters from 3676
b = 11.010 (3) Å	reflections
c = 13.740 (4) Å	$\theta = 3.1 - 25.3^{\circ}$
$\alpha = 107.117 (5)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 93.142 (3)^{\circ}$	T = 193 (2) K
$\gamma = 104.813 (5)^{\circ}$	Block, yellow
$V = 934.2 (5) \text{ Å}^3$	$0.60 \times 0.36 \times 0.18 \text{ mm}$

Data collection

Rigaku Mercury diffractometer	3042 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.017$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.3^{\circ}$
(Jacobson, 1998)	$h = -8 \rightarrow 7$
$T_{\min} = 0.924, \ T_{\max} = 0.981$	$k = -13 \rightarrow 13$
9243 measured reflections	$l = -16 \rightarrow 15$
3391 independent reflections	
Refinement	

refinement

•	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0516P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	+ 0.295 <i>P</i>]
$wR(F^2) = 0.102$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3391 reflections	$\Delta \rho_{\text{max}} = 0.18 \text{ e Å}^{-3}$
274 parameters	$\Delta \rho_{\min} = -0.20 \text{ e Å}^{-3}$
H atoms treated by a mixture of	

Table 1 Selected geometric parameters (Å, °).

independent and constrained

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1-C1	1.3762 (16)	N2-C9	1.1552 (19)
O3-C7 1.3694 (17) C3-C4 1.5028 (19) O3-C6 1.3905 (17) C4-C5 1.3518 (19) N1-C1 1.3364 (19) C1-O1-C5-C4 16.98 (18) C5-O1-C1-C2 -12.22 (18) C1-O1-C5-C4 16.98 (18) O1-C1-C2-C3 -7.5 (2) C7-O3-C6-C4 -4.61 (18) C1-C2-C3-C4 20.08 (17) C5-C4-C6-O3 3.21 (18) C2-C3-C4-C5 -15.53 (17) C6-O3-C7-C8 2.92 (19) C3-C4-C5-O1 -1.7 (2) O3-C7-C8-C5 0.3 (2)	O1-C5	1.3791 (16)	C1-C2	1.3592 (19)
O3-C6 1.3905 (17) C4-C5 1.3518 (19) N1-C1 1.3364 (19) 1.3518 (19) C5-O1-C1-C2 -12.22 (18) C1-O1-C5-C4 16.98 (18) O1-C1-C2-C3 -7.5 (2) C7-O3-C6-C4 -4.61 (18) C1-C2-C3-C4 20.08 (17) C5-C4-C6-O3 3.21 (18) C2-C3-C4-C5 -15.53 (17) C6-O3-C7-C8 2.92 (19) C3-C4-C5-O1 -1.7 (2) O3-C7-C8-C5 0.3 (2)	O2-C6	1.2096 (17)	C2-C3	1.5200 (19)
N1-C1 1.3364 (19) C5-O1-C1-C2 -12.22 (18) C1-O1-C5-C4 16.98 (18 O1-C1-C2-C3 -7.5 (2) C7-O3-C6-C4 -4.61 (18 C1-C2-C3-C4 20.08 (17) C5-C4-C6-O3 3.21 (18 C2-C3-C4-C5 -15.53 (17) C6-O3-C7-C8 2.92 (19 C3-C4-C5-O1 -1.7 (2) O3-C7-C8-C5 0.3 (2)	O3-C7	1.3694 (17)	C3-C4	1.5028 (19)
C5-O1-C1-C2 -12.22 (18) C1-O1-C5-C4 16.98 (18) O1-C1-C2-C3 -7.5 (2) C7-O3-C6-C4 -4.61 (18) C1-C2-C3-C4 20.08 (17) C5-C4-C6-O3 3.21 (18) C2-C3-C4-C5 -15.53 (17) C6-O3-C7-C8 2.92 (19) C3-C4-C5-O1 -1.7 (2) O3-C7-C8-C5 0.3 (2)	O3-C6	1.3905 (17)	C4-C5	1.3518 (19)
O1-C1-C2-C3 -7.5 (2) C7-O3-C6-C4 -4.61 (18 C1-C2-C3-C4 20.08 (17) C5-C4-C6-O3 3.21 (18 C2-C3-C4-C5 -15.53 (17) C6-O3-C7-C8 2.92 (19 C3-C4-C5-O1 -1.7 (2) O3-C7-C8-C5 0.3 (2)	N1-C1	1.3364 (19)		
C1-C2-C3-C4 20.08 (17) C5-C4-C6-O3 3.21 (18 C2-C3-C4-C5 -15.53 (17) C6-O3-C7-C8 2.92 (19 C3-C4-C5-O1 -1.7 (2) O3-C7-C8-C5 0.3 (2)	C5-O1-C1-C2	-12.22(18)	C1-O1-C5-C4	16.98 (18)
C2-C3-C4-C5	O1-C1-C2-C3	-7.5(2)	C7-O3-C6-C4	-4.61 (18)
C3-C4-C5-O1 -1.7 (2) O3-C7-C8-C5 0.3 (2)	C1-C2-C3-C4	20.08 (17)	C5-C4-C6-O3	3.21 (18)
	C2-C3-C4-C5	-15.53(17)	C6-O3-C7-C8	2.92 (19)
66 64 65 60 60 60 65 60 65 45 (2)	C3-C4-C5-O1	-1.7(2)	O3-C7-C8-C5	0.3(2)
$\frac{\text{C6}-\text{C4}-\text{C5}-\text{C8}}{-0.3(2)}$ $\frac{\text{C4}-\text{C5}-\text{C8}-\text{C7}}{-1.5(2)}$	C6-C4-C5-C8	-0.3 (2)	C4-C5-C8-C7	-1.5 (2)

Table 2 Hydrogen-bonding geometry (Å, °).

$D-\mathbf{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
N1−H1 <i>B</i> ···O6 ⁱ	0.92(2)	1.98 (2)	2.862 (2)	160 (2)
$N1-H1A\cdots N2^{ii}$	0.87(2)	2.32(2)	3.147 (2)	158 (2)
$C18-H18\cdots N2^{i}$	0.95	2.57	3.135 (2)	118
$C16-H16A\cdots O2^{iii}$	0.99	2.38	3.262(2)	148
$C14-H14\cdots O4^{ii}$	0.95	2.55	3.212 (2)	127

Symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) 1 + x, y, z; (iii) -1 - x, 1 - y, -z.

H atoms on carbon were positioned geometrically and treated as riding on their parent C atoms, with C-H distances in the range 0.95-1.00 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$. The amino H atoms were located in difference Fourier maps and refined isotropi-

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the Foundation of the 'Surpassing Project' of Jiangsu Province and the Foundation of the Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province for financial support.

organic papers

References

- Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1998). J. Chem. Soc. Chem. Commun. pp. 1202–1204.
- Jacobson, R. (1998). Private communication to the Rigaku Corporation.
- Lorente, A., Galan, C., Fonseca, I. & Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546–1555.
- O'Callaghan, C. N. & McMurry, T. B. H. (1995). J. Chem. Res. (S), pp. 214–215.
- Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.

- Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, D. Q., Chen, J., Zhuang, Q. Y. & Hu, H. W. (2003). *J. Chem. Res.* (S). pp. 674–675.
- Shi, D. Q., Wang, X. S. & Tu, S. J. (2002). Chin. J. Org. Chem. 22, 1053–1056.
 Wang, J., Shi, D.-Q. & Wang, X.-S. (2004). Acta Cryst. E60, 01401–01402.
- Zhuang, Q. Y., Shi, D. Q., Tu, S. J. & Wang, X. S. (2002). Chin. J. Appl. Chem. 19, 1019–1020.
- Zhuang, Q.-Y., Shi, D.-Q. & Wang, X.-S. (2003). Acta Cryst. E59, o1474-o1475.